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Consideration is given to the computation of boundary layer flows displaying evolution 
between similarity regimes. A continuous transformation is introduced which reflects the 
associated evolution. When applied in conjunction with recent developments involving 
extrapolation on crude nets an efficient, accurate and straightforward algorithm ensues. 

1. INTRODUCTION 

In investigations of non-similar boundary layer flows is has long been customary 
to exploit a knowledge of “near” similarity over a coordinate range to transform the 
governing boundary layer equations into a form amenable to numerical computation 
or series expansion analysis. For instance, the similarity solutions of Blasius and 
Falkner-Skan frequently provide the basis for similarity transformations of the 
boundary layer equations when considering regular perturbations of flows about 
sharp or blunt leading edges. A particular class of problem concerns flows involving 
the evolution, with respect to a characterising coordinate (either time-like or space- 
like), from one similarity regime to another. Investigation of such flows typically 
involves regular and inverse coordinate expansion about the asymptotically valid 
similarity solution appropriate to each of the unperturbed regimes. To substantiate 
the validity of the series solutions it is usual to undertake a full numerical integration 
of the governing equations. This has, in the past, been achieved by initiating the 
integration in the context of one set of transformed variables and its associated 
equations up to a coordinate location where their suitability starts to become 
questionable. At this stage, usually at a convenient coordinate location if the problem 
has been well formulated, the algorithm continues via a switch to the set of equations 
associated with the transformed variables appropriate to the final similarity regime. 
In this paper we indicate that the somewhat unwieldy switch between two sets of 
governing equations may be avoided by the introduction of a continuous transfor- 
mation, in the characterising coordinate, reflecting the prior knowledge of the 
respective similarity regimes. 
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2. ILLUSTRATIVE PROBLEMS 

To demonstrate the continuous transformation computation we have chosen to re- 
examine two mixed convection boundary layer problems which have appeared in the 
literature. They are concerned with the effect of buoyancy forces on the flow of a 
uniform stream over a semi-infinite vertical plate whose leading edge is aligned 
horizontally. Accelerating buoyancy forces result from the application of (a) the 
uniform temperature [ 11, (b) the uniform heat flux [2] boundary constraint at the 
plate. Each flow provides an ideal illustration of the evolution between two similarity 
states. Near the leading edge there is little opportunity for heat from the plate to 
assimilated by the fluid and the boundary layer is formed mainly by the retardation 
of the free stream by viscosity. Away from the leading edge, however, buo~a~~~ 
forces become increasingly important until far downstream the flow will be 
predominantly one of free convection perturbed by the presence of the free stream. 
Each flow can be characterised by a non-dimensional coordinate reflecting the local 
relative importance of viscous and buoyancy forces. Accordingly an evolution in the 
appropriate coordinate between the similarity states of Blasius and (a) Ostrach ]%] 
and (b) Sparrow and Gregg [4] characterises each problem. 

3. EQUATIONS AND TRANSFORMATIONS 

n the usual notation the governing boundary layer equations representing conser- 
vation of mass, momentum and energy, respectively, are 

to be solved subject to the boundary conditions 

(a) T=T, 
u==v=o, 

(b) $7 
ony=Q (41 

u+U,T-+Toas y-+co. 
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(a) Uniform Temperature 

HUNT AND WILKS 

The characteristic non-dimensional coordinate employed by Merkin for this case is 

& Gr, = MT, - To)x 
Rex u2 ’ (5) 

where Gr, and Re, are local Grashof and Reynolds numbers based on the distance 
from the leading edge. 

Transformations appropriate to the leading edge and downstream regimes are 
respectively 

Blasius Ostrach 

v = (2~w”2.fg,, r), ljY = 4Ycx3’4f(~,, q>, 

T - To = (Tl - To) SC&,, > r>, T - T, = (T, - T,,) @c;, , ff), (6) 

leading to the two distinct sets of equations which provided the orginal basis for the 
computation algorithm 

af 
f=-=o,e=las~=O 

ar 

(a 3 Prandtl Number). 
Significantly 

$+3j-g-2 g,s 
(3 

=4c& ----- 
( 

a7 af a2J' aJ; 
x,aq afi ar at, 1 

=45&l 
( 

af a@ aJ' a- ----- 
afi at, R) at, afi 

f=$=O,B=lon?=O 

a0 
3 %vl -li2, S+ 0 as f-+ co (7) 
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and accordingly a convenient switch from one system to the other at 5, = ?, 
facilitates successful integration over all 5,. Clearly the separate trausformatio~s are 
useful for pursuing perturbation analyses in the distinct regimes. Mowever, wben it 
comes to full numerical integration the distinction is not entirely a natural one, 
witness the evolution of velocity profiles with respect to the boundary condition away 
from the plate. Is it possible to formulate the transformations in a way which more 
naturally reflects the evolution between the two basic similarity regimes and 
simultaneously avoids the unwieldy switch necessitated in the above algorithm? 

Since integration must of necessity be initiated in the Blasius regime we exa 
the possibility of continuous transformations 

where r(&,J, 
the pure free 

In general 

GM) and G,J are to be chosen to allow a smooth transition towards 
convection regime. 
transformations (9) in (l)-(3) lead to 

Without loss of generality we can prescribe r(O) = s(0) = t(0) = 1 and 
with (8) one is led to the conclusion that choosing 

toget 

+&A = Gf) = (1 + &y4; s(<,) = 1 (InI 
will provide the basis for the required continuous transformation. ~ccordi~~l~ we 
anticipate that the single system of equations 
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may be utilised for the complete numerical integration of the boundary layer flow 
between Blasius and Ostrach similarity regimes. In particular we note that the non- 
dimensional velocity unity at infinity implies 

a? 1 1 
g= Y(SJf(&& = (1 + &y2 

as $-+co. (13) 

The velocity profiles may thus be expected to evolve continuously between their pure 
forced and pure free convection asymptotes. 

(b) Unifarm Heat Flux 

The characteristic non-dimensional coordinate for this case was introduced by 
Wilks as 

where Nu, is the local Nusselt number based on x. 
The appropriate transformations are 

Blasius 

w = (2v~x)1’2f(tw), 

and the distinct sets of equations are 

(14) 

Sparrow and Gregg 

v = c*x4’5.&, f), 

T-To=$f&,li). (15) 
3 

C3Y r^=-..- 
xl/5 ’ 
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The counterparts of (8) now read 

Invoking the continuous transformation 

Iv = (2~~4”2&J.7G! 7 vji>; )--* 
0 s&v) &, 7 $3 

u 

- 0 

112 (18) 

fl=y G ttrw1 

yields 

r a7 a0 =2&,- 
I 

aJ at7 -;---- . 
t ar at, at, afi I 

Similar arguments as for the case (a) lead to the choice 

.4&v) = (1 + rwy”, t(t-,> = (1 + 5w)3’10, s = (I $ <w)-3’10 

and the resultant single system for full numerical integration is 
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and again velocity profiles will evolve continuously between pure forced and pure free 
convection asymptotes. 

4. NUMERICAL PROCEDURE 

The numerical method employed was originally designed by Keller (Keller and 
Cebeci [5], Keller [6]) and has become known as the “Keller box” method. 

Equations (12) and (21) are recast as a set of five simultaneous linear equations by 
introducing variables U; ~7, and 6, they become 

(23a) 

(23b) 

where for the uniform temperature case (a) 5 = &, , p1 = 1 + h, p2 = -X9 P3 = 2X and 
p4 = 0; and for the uniform heat flux case (b) < = &, p1 = 1 i- $Xx, P2 = -$Xx, 
p3 = -5~~‘~ and p4 = - (1 - ix) where in both cases x = r/(1 + r). 

The boundary conditions (4) are 

(a) u”-+ (1 +<)-'/', 

(b) zZ-+ (1 + 5)-3’5, 
B-+Oasq-+co. 

A net is placed on the (r, rj plane defined by 

to=O,Cz=L,+k, n = 1, 2,..., 

$~iooO,fj=fj-l +hj j = 1) 2 )...) N. 
(25) 
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TABLE I 

g Sequences of z? at r = 2, c = 0 for (a) Uniform Temperature Case 
and (b) Uniform Heat Flux Case 

1.106645 
1.104518 
1.104237 
1.104150 

1.103809 
1.104012 
1.104037 

I.104038 
1.104045 

1.104046 

@I 
1.909357 
1.898554 

1.894954 
1.894563 

1.894514 
1.896337 1.894501 

1.894501 

1.895541 1.894517 

Note. First column contains g,, g,, g, and g,, second g,*, g,, and g,,, third g,,, and g,,, and 
fourth g,;,, 

The values of {, used are shown in Tables II and III and $j were taken as si~h~~~~) 
with N = 12 giving an outer boundary Iii, = 10.02. If gj” denotes the value of any 
variable at (<,, l;;j) then variables and derivatives of (23c), (23e) at (r,-,,,, 5-l,?) are 
replaced by 

& 
( ) 

n-112 

Z j-1/2 n 
=~(g~+g~-!-g:-'-g:r:), 

& 

( ) 

n-1/2 

=$g; f gj"-'- &1- gg, 
arT j-112 J 

where 5,- 1,2 = <,-, + fk, and $j--1,2 = ~jii-l t ~hj. Equations (23a), (23b), (23d), as 
they do not involve < explicitly, were centred at (<, , flj- 1/Z) using 

The boundary conditions (24) then imply 

f;r = 2.7; = 0, 
(a) @ = 1, Z.Z$= (1 + W”” 

= 0. 
(b) 6; =-I, u;= (1 + c&)-~? 

If the problem has been solved up to c!&- I then we have 5N equations plus 5 
boundary conditions for the 5N + 5 unknowns VJ, $7, VJ’, $, 1.97)~ j = 0, I,..., IK 

581/40/2-15 
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TABLE II 

Flow Parameters for Uniform Temperature Case 

~ ~~ ~ 

0.0 0.46960 a3 -0.46960 co 
0.2 0.66142 1.19905 -0.50547 0.83650 
0.4 0.78117 1.12408 -0.52433 0.63766 
0.6 0.86428 1.12242 -0.53611 0.55042 
0.8 0.92556 1.13710 -0.54417 0.49830 
1.0 0.97264 1.15668 -0.55000 0.46249 
1.3 1.02581 1.18817 -0.55620 0.42479 
1.6 1.06519 1.21922 -0.5605 1 0.39788 
2.0 1.10406 1.25835 -0.5645 1 0.37147 
2.5 1.13883 1.30325 -0.56784 0.34734 
3.2 1.17224 1.35945 -0.57077 0.32299 
4.0 1.19786 1.41609 -0.57279 0.30283 
5.0 1.21935 1.47822 -0.57428 0.28422 
7.0 1.24468 1.58239 -0.57568 0.25876 

10.0 1.26375 1.70683 -0.57632 0.23469 
15.0 1.27792 1.86652 -0.57630 0.21043 
20.0 1.28439 1.99220 -0.57597 0.19495 
30.0 1.28997 2.18789 -0.57526 0.17524 
60.0 1.29359 2.57753 -0.57377 0.14638 

100.0 1.29374 2.91456 -0.57267 0.12837 
250.0 1.29207 3.64380 -0.57098 0.10164 

10’ 1.28897 5.12925 -0.56922 0.07159 
104 1.28599 9.09403 -0.56784 0.04015 
106 1.28456 28.7236 -0.56721 0.01268 
1O’O 1.28439 287.199 -0.56715 0.00129 
10’6 1.28439 9.08198 x IO3 -0.56715 0.00004 
1o24 1.28439 9.08198 x lo6 -0.56715 0.00000 

These are non-linear algebraic equations which are solved using Newton’s iteration, 
the values of the variables at r-i being used as an initial iterate. At 5= 0 Eqs. (23) 
only involve r~ explicitly and are discretized using (26), the resulting algebraic 
equations are again solved using Newton’s iteration. 

In order to employ Richardson’s extrapolation each cell of the net (25) is divided 
into 2m subintervals’ in the < direction and m subintervals in the ri direction, where m 
is an integer. The program was run for m = 1, 2, 3 and 4. If g,, g,, g, and g, are the 
results of a variable g at a given location (& ~3 then the gj have accuracy 0(/z* + k*), 

’ It was found that an odd number of subintervals tended to produce less accurate results. The division 
was always into equal subintervals except for the first step of case (b), where each subinterval is propor- 
tional to < ‘I* This was chosen because the expansion for small < is non-Maclaurin and depends on . 
powers of <“* (see Wilks [2]). The ensuing results were more accurate than when equal subintervals 
were used. 
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where h = maxj hj and k = max, k,. Since the truncation error is ~ro~o~ioual to the 
square of h and k then 

izl, = ;c% - g1>, g23 = mr3 - 4g2), g34 = f(16g, - 9g,) 

have errors O(h4 + k4) and 

g 123 = icgg23 - &?I,) and g234 = f(4g3, - gz3) 

will be in error by O(h6 + k6) and finally 

g 1234 = & (16gz34 - gl23) 

will have error O(h8 + k*). Table I shows the g sequences for v” at r = 2, d = 
illustrating the increases in accuracy that can be obtained. The results quoted are 
g1234 and the error is estimated by the difference (g,,,, - g,,,), which being a global 
error estimate measures the actual error in g. It should be appreciated that this error 
estimate is for g,,, and hence we expect the results to be slightly more accurate than 
quoted later, say by perhaps one decimal place. 

5. NUMERICAL RESULTS 

In the first instance the “Keller box” method was used on the original transformer 
equations of Merkin and Wilks and entirely satisfactory agreement with their results 
was obtained. Once the basic program had been validated in this way, adaptat~o~ to 
the continuous transformation equations was readily achieved and the det~~l~d 
numerical procedure of Section 4 was implemented. 

The maximum estimated error difference (glzs4 - gzs4) over all variables is for the 
uniform temperature case (a) 3 x 10m6 and for the uniform heat flux case (b) 
3 x 1Qe6, we therefore anticipate the results to be accurate to 5 decimal places. 

Figures 1 and 2 show the velocity profiles u” at various locations of 5 for (a) 
(b), respectively, which are related to u by the formulae. 

(a) u = U(1 + &J% (b) u = U(1 + c!&)~‘~C 

Tables II and III give the results for the skin friction coe~cie~t defined by 

(b) r~=(23~;y’)“6($)0= (lg” (~7’)~ 
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FIG. 1. Constant temperature velocity profiles. Numbers annotated to the profiles are 5,. 
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FIG. 2. Constant heat flux velocity profiles. Numbers annotated to the profiles are 

a%d the heat transfer coefficient defined by 

The results are in good agreement with those of Merkin and Wilks. In view of the 
order of accuracy of the present algorithm compared to that used previously one 
would expect the present results to be the more accurate. 
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TABLE III 

Flow Parameters for Constant Heat Flux Case 

(fh 

0.0 0.46960 
0.1 0.56647 
0.2 0.71201 
0.4 0.97673 
0.6 1.18675 
0,8 1.35320 
1.0 1.48753 
1.3 1.64617 
1.6 1.76876 
2.0 1.89450 
2.5 2.01166 
3.2 2.12923 
4.0 2.22363 
5.0 2.30655 
7.0 2.4 1075 

10.0 2.49662 
15.0 2.56883 
20.0 2.60702 
30.0 2.64685 
60.0 2.68877 

100.0 2.70636 
250.0 2.72298 

iv 2.73202 
IO4 2.73523 
lo6 2.73575 
1O’O 2.73579 
lQ’6 2.73579 
1P 2.73579 

1.3& 1 
1.32655 
1.47824 
1.65378 
1.81571 
1.96281 
2.16045 
2.33652 
2.54609 
2.77799 
3.06236 
3.34650 
3.65847 
4.18667 
4.83160 
5.68700 
6.38427 
7.51414 
9.92566 

12.1832 
17.5900 
30.6450 
77.0049 

485.918 
1.93449 x lo4 
4.85923 x lo6 
7.70137 x 109 

(&T 2 

-1.54064 a3 
-1.51405 1.!5972 
-1.46719 1.13825 
-1.39585 0.88604 
-1.34999 0.71860 
--1.31881 0.71505 
-1.29638 0.67152 
-1.27259 0.62567 
-1.25597 0.59284 
-1.24037 0.56047 
-1.22707 0.53072 
-1.21489 0.50044 
-1.20594 0.475 14 
-1.19872 0.45157 
-1.19057 0.41890 
-1.18479 0.38749 
-1.18078 0.35523 
-1.17911 e.33425 
-1.17786 0.30707 
-1.17746 0.266 11 
-1.17783 0.23912 
-1.17886 0.19905 
-l.l8020 0.15054 
-1.18126 0.09488 
-1.18165 0.03775 
-1.18i68 O.OG598 
-1.18168 0.00038 
-1.18168 0.0000 1 

-. 

6. CONCLUDING REMARKS 

We have re-examined the computation of two members of the class of boundary 
layer flows displaying evolution between similarity regimes. When a prior ~n~w~ed~~ 
of the final similarity regime is available it has been demonstrated that a cont~~~~~s 
transformation may successfully be invoked which follows closely the ~a~~ra~ 
evolution of the flow. Accordingly full numerical solution may be obtained in the 
context of a single transformed system of equations. When applied in con~~~et~~~ 
with recent computational developments involving extrapolation on crude nets an 
efficient, accurate and straightforward algorithm ensues. The algorithm represents a 
significant improvement on those used previously and it therefore commends itself for 
general use in a wide class of boundary layer flows, including all such flows evolving 
from the general Falkner-Skan similairty states. 
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